BigQuery Basics
Agenda

● Overview
 ○ Why do you need a dataware warehouse?
 ○ Why BigQuery?
● BigQuery organization
● Accessing BigQuery
● Google Analytics Export
● How to Query data
 ○ Query Samples
● Resources
Why Do You Need a Data Warehouse?

• A data warehouse is the most valuable asset of your BI team
• How it works:
 • Data are extracted on a periodic basis from source systems and moved to a dedicated server that contains the data warehouse
 • During this process, the data are cleaned, formatted, validated, reorganized, summarized, and integrated with other sources
• A data warehouse delivers value to companies through:
 • The generation of scheduled reports
 • Packaged analytical solutions
 • Adhoc reporting and analysis
 • Dynamic visualization
 • Storage of historical data
 • Data mining
Choosing a Data Warehouse

There are many factors to consider when choosing a data warehouse:

- **Assets**: generation of big data reports requires expensive servers
- **People**: skilled database administrators are needed to manage data integrity
- **Cost**: interacting with big data can be expensive, slow, and inefficient
- **Scale**: how much storage is needed and will storage needs change over time?
- **Security**: how is data protected to ensure availability and durability?
What is BigQuery?

• BigQuery is a service provided by Google Cloud Platform, a suite of products & services that includes application hosting, cloud computing, database services, etc on on Google's scalable infrastructure
• BigQuery is Google’s fully managed solution for companies who need a fully-managed and cloud based interactive query service for massive datasets
Why BigQuery?

• Service for interactive analysis of massive datasets (TBs)
 • Query billions of rows: seconds to write, seconds to return
 • Uses a SQL-style query syntax
 • It's a service, can be accessed by a API

• Reliable and Secure
 • Replicated across multiple sites
 • Secured through Access Control Lists

• Scalable
 • Store hundreds of terabytes
 • Pay only for what you use

• Fast (really)
 • Run ad hoc queries on multi-terabyte data sets in seconds
Agenda

● Overview
 ○ Why do you need a dataware warehouse?
 ○ Why BigQuery?

● BigQuery organization

● Accessing BigQuery

● Google Analytics Export

● How to Query data
 ○ Query Samples

● Resources
BigQuery Organization

• BigQuery is structured as a hierarchy with 4 levels:
 • Projects: Top-level containers in the Google Cloud Platform that store the data
 • Datasets: Within projects, datasets hold one or more tables of data
 • Tables: Within datasets, tables are row-column structures that hold actual data
 • Jobs: The tasks you are performing on the data, such as running queries, loading data, and exporting data
Projects

- Projects are the top-level containers that store the data
- Within the project, you can configure settings, permissions, and other metadata that describe your applications
- Each project has a name, ID, and number that you’ll use as identifiers
- When billing is enabled, each project is associated with one billing account but multiple projects can be billed to the same account
 - This [link](#) provides more information on pricing options for BigQuery
Datasets

• Datasets allow you to organize and control access to your tables
• All tables must belong to a dataset. You must create a dataset before loading data into BigQuery
• You can configure permissions at the organization, project, and dataset level
 • See this link for more information on access control
Tables

• Tables contain your data in BigQuery
• Each table has a schema that describes the data contained in the table, including field names, types, and descriptions
• BigQuery supports the following table types:
 • Native tables: tables backed by native BigQuery storage
 • External tables: tables backed by storage external to BigQuery
 • Views: virtual tables defined by a SQL query
Jobs

• Jobs are objects that manage asynchronous tasks such as running queries, loading data, and exporting data
 • You can run multiple jobs concurrently
 • Completed jobs are listed in the Jobs collection
• There are four types of jobs:
 • Load: load data into a table
 • Query: run a query against BigQuery data
 • Extract: export a BigQuery table to Google Cloud Storage
 • Copy: copy an existing table into another new or existing table
Example: BigQuery, Datasets, and Tables

• Here is an example of the left-pane navigation within BigQuery
• Projects are identified by the project name, e.g. Public Datasets, and ID, e.g. bigquery-public-data
• You can expand projects to see the corresponding datasets, e.g. samples, and tables, e.g. github_nested
• Tables are referenced by their project and dataset as: <project>:<dataset>.<table>
 • e.g. bigquery-public-data:samples.natality
Example of Simple Schema

Schema for table Natality under Sample Datasets

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>INTEGER</td>
<td>NULLABLE</td>
</tr>
<tr>
<td>month</td>
<td>INTEGER</td>
<td>NULLABLE</td>
</tr>
<tr>
<td>day</td>
<td>INTEGER</td>
<td>NULLABLE</td>
</tr>
<tr>
<td>wday</td>
<td>INTEGER</td>
<td>NULLABLE</td>
</tr>
<tr>
<td>state</td>
<td>STRING</td>
<td>NULLABLE</td>
</tr>
<tr>
<td>is_male</td>
<td>BOOLEAN</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>child_race</td>
<td>INTEGER</td>
<td>NULLABLE</td>
</tr>
</tbody>
</table>
Agenda

- **Overview**
 - Why do you need a dataware warehouse?
 - Why BigQuery?
- **BigQuery organization**
- **Accessing BigQuery**
- **Google Analytics Export**
- **How to Query data**
 - Query Samples
- **Resources**
Accessing BigQuery

• You can access BigQuery and run jobs from your web browser
• Developers can use bq command line tool
 • python-based tool that can access BigQuery from the command line
• Developers can also leverage the Service API
 • RESTful API to access BigQuery programmatically
 • Requires authorization by OAuth2
 • Google client libraries for Python, JavaScript, PHP, etc.
• Integration Possible with Third party Tools
 • Visualization and Statistical Tools tools like Tableau, QlikView, R, etc.
• You can export data in a .csv file, jason or to Google Cloud Storage
Agenda

- Overview
 - Why do you need a dataware warehouse?
 - Why BigQuery?
- BigQuery organization
- Accessing BigQuery
- Google Analytics Export
- How to Query data
 - Query Samples
- Resources
Google Analytics Export

• *This feature is only available to Google Analytics Premium accounts.*

• You can export session and hit data from a Google Analytics account to BigQuery

 • Use SQL-like syntax to query

 • Unsampled, detailed Analytics logs automatically imported to BigQuery

• When data is exported to BigQuery, you own that data and you can use BigQuery Access Control Lists (ACLs) to manage permissions on projects and datasets

• Ability to integrate with data in multiple datasources

• Your Google Analytics 360 Account Manager will give you a monthly credit of $500 USD towards usage of BigQuery for this project
Google Analytics BigQuery Export Schema

• Datasets: For each Analytics view that is enabled for BigQuery integration, a dataset is added using the view ID as the name.
• Tables: Within each dataset, a table is imported for each day of export. These tables have the format "ga_sessions_YYYYMMDD".
• Rows: Each row within a table corresponds to a session in Google Analytics.
• Columns: Each column contains a value or set of nested values.
 • Find the full list of columns by following the link [here](#)
Google Analytics BigQuery Export Schema

- Below is a subset of columns from the schema.
- Many of the columns will be familiar to Google Analytics users, such as user ID, visits (sessions), hits, and pageviews.
- For the full list, see this link.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fullVisitorId</td>
<td>STRING</td>
<td>The unique visitor ID (also known as client ID).</td>
</tr>
<tr>
<td>visitorId</td>
<td>NULL</td>
<td>This field is deprecated. Use "fullVisitorId" instead.</td>
</tr>
<tr>
<td>userId</td>
<td>STRING</td>
<td>Overridden User ID sent to Analytics.</td>
</tr>
<tr>
<td>visitNumber</td>
<td>INTEGER</td>
<td>The session number for this user. If this is the first session, then this is set to 1.</td>
</tr>
<tr>
<td>visitId</td>
<td>INTEGER</td>
<td>An identifier for this session. This is part of the value usually stored as the _utmrb cookie. This is only unique to the user. For a completely unique ID, you should use a combination of fullVisitorId and visitId.</td>
</tr>
<tr>
<td>totals</td>
<td>RECORD</td>
<td>This section contains aggregate values across the session.</td>
</tr>
<tr>
<td>totals.visits</td>
<td>INTEGER</td>
<td>The number of sessions (for convenience). This value is 1 for sessions with interaction events. The value is null if there are no interaction events in the session.</td>
</tr>
<tr>
<td>totals.hits</td>
<td>INTEGER</td>
<td>Total number of hits within the session.</td>
</tr>
<tr>
<td>totals.pageviews</td>
<td>INTEGER</td>
<td>Total number of pageviews within the session.</td>
</tr>
</tbody>
</table>
Google Analytics BigQuery Export Schema

• Some columns within the export have nested fields
• Nested fields are referenced by using a period (.)
 • For example, within the customDimensions field, there are two nested fields, customDimensions.index and customDimensions.value
Google Analytics BigQuery Export Schema

• The schema also includes many useful columns that are not accessible within the GA user interface or Core Reporting API

• Some of these additional columns include:
 • fullVisitorId, the anonymous identifier used by the GA cookie
 • visitId, an identifier for the session
 • hits.hitNumber, the sequenced hit number

• Access to these three variable allows for deeper analysis at the user, session, and hit level
Agenda

- Overview
 - Why do you need a dataware warehouse?
 - Why BigQuery?
- BigQuery organization
- Accessing BigQuery
- Google Analytics Export
- How to Query data
 - Query Samples
- Resources
How to Query Data?

• BigQuery uses a SQL-like language for querying and manipulating data
• SQL statements are used to perform various database tasks, such as querying data, creating tables, and updating databases
 • For today, we’ll focus on SQL statements for querying data. These statements use the SELECT command
• Queried data is presented in a table called the result set
How to Query Data?

• Basic queries contain the following components:
 • SELECT (required): identifies the columns to be included in the query
 • FROM (required): the table that contains the columns in the SELECT statement
 • WHERE: a condition for filtering records
 • ORDER BY: how to sort the result set
 • GROUP BY: how to aggregate data in the result set

• Example query:

```
SELECT year, state, is_male, gestation_weeks
FROM [bigquery-public-data:samples.natality]
```
Query Sample:
Time Spent Per session per user

```sql
SELECT fullVisitorID, visitID, totals.timeOnSite
FROM [google.com:analytics-bigquery:LondonCycleHelmet.go_sessions_20130910]
WHERE totals.timeOnSite is not Null
```

<table>
<thead>
<tr>
<th>Row</th>
<th>fullVisitorID</th>
<th>visitID</th>
<th>totals_timeOnSite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>380066991751227400</td>
<td>1378805776</td>
<td>468</td>
</tr>
<tr>
<td>2</td>
<td>712553853538222331</td>
<td>1378804218</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>881288060286722202</td>
<td>1378803865</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>861288060286722202</td>
<td>1378805870</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>1677140157296205496</td>
<td>1378803380</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>1835100872530930153</td>
<td>1378809704</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>1856398683343353505</td>
<td>1378809505</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>279610042573824329</td>
<td>137820424</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>2863775205455491611</td>
<td>1378803975</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>2879713552508983525</td>
<td>1378803173</td>
<td>34</td>
</tr>
<tr>
<td>11</td>
<td>3133427106339104046</td>
<td>1378821422</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>3730804243329645579</td>
<td>1378816903</td>
<td>26</td>
</tr>
</tbody>
</table>
Query Sample: Sequence of Pages Viewed by User

```
SELECT fullVisitorId, visitId, visitNumber, hits.hitNumber, hits.page.pagePath
FROM [google.com:analytics-bigoquery:LondonCycleHelmet.ga_sessions_20130918]
WHERE hits.type = 'PAGE'
ORDER BY fullVisitorId, visitId, visitNumber, hits.hitNumber
LIMIT 1000
```
Query Sample:
Revenue per medium

```
SELECT trafficSource.medium, round(sum(totals.transactionRevenue/1000000),2) as Revenue
FROM [google.com:analytics:bigquery:LondonCycleHelmet.ga_sessions_20130910]
where trafficSource.medium is not null
GROUP BY trafficSource.medium
HAVING Revenue is not null
LIMIT 1000
```
Visualization Example - Tableau

This bar chart shows the distribution of cpc costs per user
Visualization Example - R

These boxplots show the difference in the number of pageviews for sessions with and without purchases.
Agenda

● Overview
 ○ Why do you need a dataware warehouse?
 ○ Why BigQuery?
● BigQuery organization
● Accessing BigQuery
● Google Analytics Export
● How to Query data
 ○ Query Samples
● Resources
Resources

- [Google BigQuery Documentation](#)
- [Google Analytics Premium + Google BigQuery for Predictive Digital Marketing](#)
- [SQL tutorial](#)
Thank You!